Comparative opsonic and protective activities of Staphylococcus aureus conjugate vaccines containing native or deacetylated Staphylococcal Poly-N-acetyl-beta-(1-6)-glucosamine.

نویسندگان

  • Tomás Maira-Litrán
  • Andrea Kropec
  • Donald A Goldmann
  • Gerald B Pier
چکیده

Staphylococcus aureus and Staphylococcus epidermidis both synthesize the surface polysaccharide poly-N-acetyl-beta-(1-6)-glucosamine (PNAG), which is produced in vitro with a high level (>90%) of the amino groups substituted by acetate. Here, we examined the role of the acetate substituents of PNAG in generating opsonic and protective antibodies. PNAG and a deacetylated form of the antigen (dPNAG; 15% acetylation) were conjugated to the carrier protein diphtheria toxoid (DT) and used to immunize animals. Mice responded in a dose-dependent fashion to both conjugate vaccines, with maximum antibody titers observed at the highest dose and 4 weeks after the last of three weekly immunizations. PNAG-DT and dPNAG-DT vaccines were also very immunogenic in rabbits. Antibodies raised to the conjugate vaccines in rabbits mediated the opsonic killing of various staphylococcal strains, but the specificity of the opsonic killing was primarily to dPNAG, as this antigen inhibited the killing of S. aureus strains by both PNAG- and dPNAG-specific antibodies. Passive immunization of mice with anti-dPNAG-DT rabbit sera showed significant levels of clearance of S. aureus from the blood (54 to 91%) compared to control mice immunized with normal rabbit sera, whereas PNAG-specific antibodies were ineffective at clearing S. aureus. Passive immunization of mice with a goat antiserum raised to the dPNAG-DT vaccine protected against a lethal dose of three different S. aureus strains. Overall, these data show that immunization of animals with a conjugate vaccine of dPNAG elicit antibodies that mediated opsonic killing and protected against S. aureus infection, including capsular polysaccharide types 5 and 8 and an untypable strain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of epitope specificity in the human opsonic antibody response to the staphylococcal surface polysaccharide poly N-acetyl glucosamine.

BACKGROUND The staphylococcal surface polysaccharide poly N-acetyl glucosamine (PNAG) is a target for killing and protective antibody in animals. We investigated the human antibody response and specificity of binding and opsonic antibodies for different epitopes on PNAG in serum samples from patients with cystic fibrosis (CF) colonized and not colonized with Staphylococcus aureus. METHODS Ser...

متن کامل

Molecular basis for preferential protective efficacy of antibodies directed to the poorly acetylated form of staphylococcal poly-N-acetyl-beta-(1-6)-glucosamine.

Poly-N-acetyl-glucosamine (PNAG) is a staphylococcal surface polysaccharide influencing biofilm formation that is also under investigation for its vaccine potential. Antibodies that bind to PNAG with either low (<15%) or high (>90%) levels of acetate are superior at opsonic and protective activity compared with antibodies that bind to PNAG with only high levels (>70%) of acetate. PNAG is synthe...

متن کامل

Opsonic and Protective Properties of Antibodies Raised to Conjugate Vaccines Targeting Six Staphylococcus aureus Antigens

Staphylococcus aureus is a major cause of nosocomial and community-acquired infections for which a vaccine is greatly desired. Antigens found on the S. aureus outer surface include the capsular polysaccharides (CP) of serotype 5 (CP5) or 8 (CP8) and/or a second antigen, a β-(1→6)-polymer of N-acetyl-D-glucosamine (PNAG). Antibodies specific for either CP or PNAG antigens have excellent in vitro...

متن کامل

Synthesis and Evaluation of a Conjugate Vaccine Composed of Staphylococcus aureus Poly-N-Acetyl-Glucosamine and Clumping Factor A

The increasing frequency, severity and antimicrobial resistance of Staphylococcus aureus infections has made the development of immunotherapies against this pathogen more urgent than ever. Previous immunization attempts using monovalent antigens resulted in at best partial levels of protection against S. aureus infection. We therefore reasoned that synthesizing a bivalent conjugate vaccine comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Infection and immunity

دوره 73 10  شماره 

صفحات  -

تاریخ انتشار 2005